Data quality management, data usage experience and acquisition intention of big data analytics

نویسندگان

  • Ohbyung Kwon
  • Nam Yeon Lee
  • Bongsik Shin
چکیده

Big data analytics associated with database searching, mining, and analysis can be seen as an innovative IT capability that can improve firm performance. Even though some leading companies are actively adopting big data analytics to strengthen market competition and to open up new business opportunities, many firms are still in the early stage of the adoption curve due to lack of understanding of and experience with big data. Hence, it is interesting and timely to understand issues relevant to big data adoption. In this study, a research model is proposed to explain the acquisition intention of big data analytics mainly from the theoretical perspectives of data quality management and data usage experience. Our empirical investigation reveals that a firm’s intention for big data analytics can be positively affected by its competence in maintaining the quality of corporate data. Moreover, a firm’s favorable experience (i.e., benefit perceptions) in utilizing external source data could encourage future acquisition of big data analytics. Surprisingly, a firm’s favorable experience (i.e., benefit perceptions) in utilizing internal source data could hamper its adoption intention for big data analytics. © 2014 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Big Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions

The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to ...

متن کامل

Big Data Quality: From Content to Context

Over the last 20 years, and particularly with the advent of Big Data and analytics, the research area around Data and Information Quality (DIQ) is still a fast growing research area. There are many views and streams in DIQ research, generally aiming at improving the effectiveness of decision making in organizations. Although there are a lot of researches aimed at clarifying the role of BIG data...

متن کامل

Application of Big Data Analytics in Power Distribution Network

Smart grid enhances optimization in generation, distribution and consumption of the electricity by integrating information and communication technologies into the grid. Today, utilities are moving towards smart grid applications, most common one being deployment of smart meters in advanced metering infrastructure, and the first technical challenge they face is the huge volume of data generated ...

متن کامل

P-V-L Deep: A Big Data Analytics Solution for Now-casting in Monetary Policy

The development of new technologies has confronted the entire domain of science and industry with issues of big data's scalability as well as its integration with the purpose of forecasting analytics in its life cycle. In predictive analytics, the forecast of near-future and recent past - or in other words, the now-casting - is the continuous study of real-time events and constantly updated whe...

متن کامل

A Fuzzy TOPSIS Approach for Big Data Analytics Platform Selection

Big data sizes are constantly increasing. Big data analytics is where advanced analytic techniques are applied on big data sets. Analytics based on large data samples reveals and leverages business change. The popularity of big data analytics platforms, which are often available as open-source, has not remained unnoticed by big companies. Google uses MapReduce for PageRank and inverted indexes....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int J. Information Management

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2014